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Abstrat

An algorithm by Bernal, De Floriani, and Puppo, for inserting a line segment into a Constrained Delaunay

triangulation is further developed. The new version of the algorithm inserts the line segment in exatly

the same manner in whih the old one does but has the additional apability that it does not delete the

triangles interseted by the line segment but transforms them through edge-swapping. Sine the onept of

edge-swapping generalizes to 3�dimensional spae, a version of the algorithm without the optimization steps

for the Delaunay property is also proposed for attempting to insert a line segment into a tetrahedralization.

A result is then presented that shows that for ertain ases the failure of this algorithm to insert a line

segment is an indiation that it an not be done. Finally, 3�dimensional problems that an be approahed

as 2�dimensional problems are identi�ed.

1. Introdution

A triangulation for a �nite set of points S in the plane is a �nite olletion of triangles in the plane having

pair-wise disjoint interiors, eah of whih intersets S exatly at its verties, and the union of whih is the

onvex hull of S. Given a triangulation T for S, we say that T is Delaunay if for eah triangle in T there

does not exist a point of S inside the irumirle of the triangle [11℄. A (Delaunay) tetrahedralization is

similarly de�ned with tetrahedra and spheres taking the plae of triangles and irles.

A more general triangulation an be de�ned. Let S be as above, and let E be a �nite olletion, possibly

empty, of line segments with endpoints in S that interset only at points in S. We say that a triangulation

T for S is onstrained by E if eah line segment in E is the union of edges in T . Given T , a triangulation

for S onstrained by E, we say that T is Delaunay onstrained by E if for eah t in T there does not exist a

point P of S inside the irumirle of t suh that no line segment in E intersets the interior of the onvex

hull of t [ fPg.

Let E be as above. Given T , a triangulation onstrained by E, we say that T satis�es the empty irle

riterion on a loal basis if given any two triangles t, t

0

in T that share a ommon edge not ontained in any

line segment in E, then the vertex in t

0

n t is not inside the irumirle of t. That triangulations of this

type and onstrained Delaunay triangulations are equivalent has been proven in [5℄, [9℄.

Algorithms for the omputation of a Delaunay triangulation for the verties of a polygon onstrained by

the boundary of the polygon have been presented in [5℄, [9℄, [10℄. As for the general problem of omputing a

Delaunay triangulation for a set of n points onstrained by a set of line segments, an O(n

2

) algorithm has been

presented in [9℄, O(n logn) divide-and-onquer algorithms have been presented in [4℄, [13℄, and an O(n logn)

plane-sweep algorithm has been presented in [12℄. Eah one of these algorithms has the disadvantage that

the set of line segments must be known before the exeution of the algorithm.

In [6℄ a method has been presented for the inremental omputation of a onstrained Delaunay triangula-

tion by stepwise insertion of points and line segments. Aordingly, algorithms are presented in [6℄ for point

insertion and line segment insertion into a onstrained Delaunay triangulation. Independently, the algorithm

for line segment insertion was also presented in [1℄. In the following setion, we desribe a new version of this

algorithm that works in the same manner in whih the old one does, but that has the additional apability of

not deleting the triangles interseted by the line segment, transforming them instead through edge-swapping

(Lawson's transformation [8℄). In Setion 3, we take advantage of the fat that edge-swapping generalizes

to 3�dimensional spae and propose what would be onsidered the generalization to 3�dimensional spae

of the algorithm without the optimization steps for the Delaunay property. A result is then presented that

shows that for ertain ases the failure of this algorithm to insert a line segment into a tetrahedralization is

an indiation that it annot be done. Finally, in the same setion, 3�dimensional problems are identi�ed

that an be approahed algorithmially as if they are 2�dimensional.



2. Segment insertion by edge-swapping

Let T be a triangulation in the plane, not neessarily Delaunay, let P

1

, P

2

, P

1

6= P

2

, be verties in T , and

let T

�

be the triangles in T whose interiors are interseted by P

1

P

2

, i. e. the line segment with endpoints

P

1

, P

2

. We say that P

1

P

2

has been inserted into T produing

^

T if

^

T is a triangulation for the verties of

T suh that P

1

P

2

is the union of edges in

^

T and eah triangle in T n T

�

is also in

^

T . In what follows, and

assuming that T is onstrained Delaunay, we present proedure INSERT SEGMENT whih inserts P

1

P

2

into the triangulation T by edge-swapping, produing a onstrained Delaunay triangulation with P

1

P

2

as an

additional onstraint. Without any loss of generality, we assume that P

1

P

2

is not an edge in T and that its

relative interior does not ontain any verties in T .

In [1℄ and [6℄ this algorithm was presented but without edge-swapping. This older version onsists

essentially of two steps. In the �rst step, the triangles whose interiors are interseted by the line segment are

deteted and deleted so that a non-triangulated region inside the onvex hull of the original triangulation

results. In the seond step, this region is divided into two polygons separated by the line segment, and a

Delaunay triangulation is then omputed for eah polygon. Eah polygon satis�es the property that eah

point in the polygon is visible through the polygon from the line segment. Beause of this property, eah

polygon an be easily triangulated in a linear fashion, and then optimized for the Delaunay property with

proedures based on the empty irle riterion. Outlines of this older version, justi�ations, optimization

proedures, and related results an be found in [1℄, [2℄, [6℄, [7℄.

The new version of the algorithm presented here works essentially in the same manner in whih the

old one does, thus produing exatly the same triangles, but has the apability through edge-swapping of

maintaining at all times a omplete triangulation. Let T , P

1

, P

2

, T

�

be as above. Essentially, ignoring the

optimization steps, the new version of the algorithm works as follows. For some integer n, let t

i

, i = 1; : : : ; n,

be the triangles in T

�

in the order in whih they are interseted by P

1

P

2

from P

1

to P

2

. Indutively, assume

that for an integer i, 1 � i � n� 1, the triangles t

j

, j = 1; : : : ; i, have been proessed in that order by the

algorithm and that T

�

and T have been transformed aordingly. Triangle t

i+1

, whih still belongs to T

�

, is

then proessed as follows. Triangle t

0

is initialized to t

i+1

. Triangle t

00

is set equal to the triangle in T

�

, not

neessarily t

i

, that urrently shares a faet with t

0

interseted by P

1

P

2

and whih is loser to P

1

than t

0

in the

diretion of P

1

P

2

. If t

0

[ t

00

is not a stritly onvex quadrilateral then the algorithm is done proessing t

i+1

.

Otherwise t

0

, t

00

, and therefore T

�

and T , are transformed through the replaement of the ommon edge by

the alternative diagonal of the quadrilateral. If only one of the two new triangles is interseted by P

1

P

2

then

t

0

is rede�ned as the one that is interseted. Otherwise it is rede�ned as the one of the two triangles that is

loser to P

1

in the diretion of P

1

P

2

. The proess above is repeated for the new t

0

, i. e. t

00

is rede�ned, et.

until t

00

does not exist as desired or t

0

[ t

00

is not a stritly onvex quadrilateral. The insertion of P

1

P

2

into

T is aomplished as soon as t

n

is proessed by the algorithm.

Let T , P

1

, P

2

, T

�

be as above. In the following, we list and desribe, in the order of their �rst appearane,

proedures used in INSERT SEGMENT as primitives.

INTERSECTED TRIANGLES(T; T

�

; P

1

; P

2

; Q; t

F

): This proedure identi�es T

�

. It also loates t

F

in T

�

with P

1

as one of its verties and a vertex Q of t

F

di�erent from P

1

.

NEXT TRIANGLE(T; P

1

; P

2

; t

P

; t

C

): Assuming that P

1

P

2

intersets the interior of t

P

, t

P

in T , P

2

62 t

P

,

this proedure loates t

C

in T whih shares a faet with t

P

interseted by P

1

P

2

, and whih is loser to P

2

than t

P

in the diretion of P

1

P

2

.

NEXT VERTEX(t

P

; t

C

; P ): Assuming that triangles t

P

and t

C

share a faet, this proedure loates vertex

P of t

C

not in t

P

.

PREVIOUS VERTEX(t

C

; P

1

; P

2

; P;Q): Assuming that P is a vertex of triangle t

C

and that P

1

P

2

intersets

exatly one of the edges of t

C

with P as an endpoint, this proedure loates the vertex Q of t

C

for whih

P

1

P

2

does not interset PQ.

STRICT CONVEXITY(t

C

; t

P

; f lag2): Assuming that triangles t

C

and t

P

share a faet, this proedure sets

flag2 to zero whenever t

C

[ t

P

is not a stritly onvex quadrilateral.

EDGE SWAP(t

C

; t

P

; Q; T; T

�

): Assuming that t

C

[ t

P

is a stritly onvex quadrilateral, t

C

, t

P

in T

�

, and

that Q is a vertex in t

C

\ t

P

, this proedure transforms t

C

, t

P

, and therefore T

�

and T , through the re-

plaement of the ommon edge by the alternative diagonal of the quadrilateral in suh a way that Q is the

vertex of the transformed t

P

not in the transformed t

C

.

OPTIMIZE(T; T

�

; t

P

; P;Q;R): Assuming that P , Q, R are the verties of t

P

, t

P

in T

�

, starting with t

P

this proedure transforms T

�

, and therefore T , through appliations of the empty irle riterion and edge-

swapping in the diretion of QR.

PREVIOUS TRIANGLE(T; P

1

; P

2

; t

C

; t

P

): Assuming that P

1

P

2

intersets the interior of t

C

, t

C

in T ,

P

1

62 t

C

, this proedure loates t

P

in T whih shares a faet with t

C

interseted by P

1

P

2

, and whih is

loser to P

1

than t

C

in the diretion of P

1

P

2

.



THIRD VERTEX(t

C

; R; P;Q): Assuming that R, P are distint verties of triangle t

C

, this proedure iden-

ti�es Q, the vertex of t

C

di�erent from R and P .

The outline of INSERT SEGMENT follows. We notie that without the optimization steps (steps 20

and 32) the proedure simply beomes one for inserting a line segment into a triangulation.

proedure INSERT SEGMENT(T; P

1

; P

2

)

begin

1. INTERSECTED TRIANGLES(T; T

�

; P

1

; P

2

; Q; t

F

);

2. F (1; t

F

) := P

1

; F (2; t

F

) := Q; flag1 := 1;

3. while (flag1 = 1) do

begin

4. t

P

:= t

F

;

5. NEXT TRIANGLE(T; P

1

; P

2

; t

P

; t

C

);

6. NEXT VERTEX(t

P

; t

C

; P );

7. if (P 6= P

2

) then

begin

8. PREVIOUS VERTEX(t

C

; P

1

; P

2

; P;Q);

9. t

F

:= t

C

end

else

begin

10. Q := F (2; t

P

); flag1 := 0

end

11. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

12. F (1; t

C

) := Q; F (2; t

C

) := P ; flag2 := 1;

13. while (flag2 = 1) do

begin

14. STRICT CONVEXITY(t

C

; t

P

; f lag2);

15. if (flag2 = 1) then

begin

16. R := F (1; t

P

); t

L

:= t

C

;

17. EDGE SWAP(t

C

; t

P

; Q; T; T

�

);

18. if (t

F

= t

L

) then t

F

:= t

C

;

19. if (F (1; t

C

) = F (2; t

P

)) then

begin

20. OPTIMIZE(T; T

�

; t

P

; P;Q;R);

21. F (1; t

C

) := R; Q := R

end

else

begin

22. F (1; t

C

) := R; F (2; t

C

) := F (2; t

P

);

23. F (1; t

P

) := Q; F (2; t

P

) := P ;t

C

:= t

P

end

24. if (R 6= P

1

) then

begin

25. PREVIOUS TRIANGLE(T; P

1

; P

2

; t

C

; t

P

);

26. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

27. if (P = P

2

) then

begin

28. Q := F (2; t

P

); F (1; t

C

) := Q

end

end

else

begin

29. flag2 := 0;

30. if (P = P

2

) then

begin

31. THIRD VERTEX(t

C

; R; P;Q);

32. OPTIMIZE(T; T

�

; t

C

; P;Q;R)

end



else

begin

33. NEXT TRIANGLE(T; P

1

; P

2

; t

C

; t

N

);

34. F (2; t

C

) := F (1; t

N

)

end

end

end

end

end

end

Justi�ations of this proedure appear in [1℄, [3℄, [7℄.

3. The 3�dimensional version of the algorithm

Let T be a tetrahedralization, not neessarily Delaunay, let P

1

, P

2

, P

1

6= P

2

, be verties in T , and let T

�

be

the tetrahedra in T eah of whih is interseted by P

1

P

2

at either its interior or the relative interior of one

of its faets. We say that P

1

P

2

an be inserted into T if a tetrahedralization

^

T for the verties of T exists

suh that P

1

P

2

is the union of edges in

^

T and eah tetrahedron in T n T

�

is also in

^

T . In what follows,

we present proedure 3D INSERT ATTEMPT whih attempts to insert P

1

P

2

into T , and whih an be

onsidered as the generalization to 3�dimensional spae of INSERT SEGMENT without the optimization

steps. We notie that only the ase for whih the relative interior of P

1

P

2

does not interset any edges in T

is addressed in what follows.

Let T , P

1

, P

2

be as above. In the following, we list and desribe, in the order of their �rst appearane,

proedures used in 3D INSERT ATTEMPT as primitives. Proedures with obvious 2�dimensional ounter-

parts in INSERT SEGMENT are neither listed nor desribed here.

FIRST TETRAHEDRON(T; P

1

; P

2

; Q; t

F

): This proedure loates t

F

in T with P

1

as one of its verties and

interior interseted by P

1

P

2

, and loates a vertex Q of t

F

, Q 6= P

1

.

COMMON VERTEX(t

C

; t

P

; Q; S; U): Assuming that tetrahedra t

C

and t

P

share a faet, and that Q and

S are verties, not neessarily distint, of the faet, this proedure loates U , a vertex of the faet di�erent

from Q and S.

TWO THREE(T; t

C

; t

P

; P;R;Q;U): Assuming that t

C

[ t

P

is a stritly onvex hexahedron, t

C

, t

P

in T ,

that P is the vertex in t

C

n t

P

, that R is the vertex in t

P

n t

C

, and that Q, U , Q 6= U , are verties in t

C

\ t

P

,

this proedure transforms T by transforming t

C

and t

P

into the three tetrahedra that have PR in ommon

and whose union is the hexahedron, in suh a way that t

C

beomes the one of the three tetrahedra that does

not have Q as a vertex, and t

P

the one that has Q and U as verties.

FACET INTERSECT(P;R;U; P

1

; P

2

; f lag2): Assuming that P , R, U are the verties of a faet of a tetra-

hedron, this proedure sets flag2 to zero whenever P

1

P

2

does not interset the relative interior of the faet.

The outline of 3D INSERT ATTEMPT follows. Here a variable flag is de�ned whih at the end of the

exeution of the proedure equals 1 if P

1

P

2

has been inserted, zero otherwise.

proedure 3D INSERT ATTEMPT(T; P

1

; P

2

; f lag)

begin

1. flag := 0;

2. FIRST TETRAHEDRON(T; P

1

; P

2

; Q; t

F

);

3. F (1; t

F

) := P

1

; F (2; t

F

) := Q; flag1 := 1;

4. while (flag1 = 1) do

begin

5. t

P

:= t

F

;

6. NEXT TETRAHEDRON(T; P

1

; P

2

; t

P

; t

C

);

7. NEXT VERTEX(t

P

; t

C

; P );

8. if (P 6= P

2

) then

begin

9. PREVIOUS VERTEX(t

C

; P

1

; P

2

; P;Q);

10. t

F

:= t

C

end

else

begin

11. Q := F (2; t

P

); flag1 := 0



end

12. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

13. F (1; t

C

) := Q; F (2; t

C

) := P ; flag2 := 1;

14. while (flag2 = 1) do

begin

15. STRICT CONVEXITY(t

C

; t

P

; f lag2);

16. if (flag2 = 1) then

begin

17. R := F (1; t

P

); S := F (2; t

P

);

18. COMMON VERTEX(t

C

; t

P

; Q; S; U);

19. if (F (1; t

C

) = F (2; t

P

)) then

begin

20. t

L

:= t

C

;

21. TWO THREE(T; t

C

; t

P

; P;R;Q;U);

22. if (t

F

= t

L

) then t

F

:= t

C

;

23. F (1; t

C

) := R; Q := R

end

else

begin

24. FACET INTERSECT(P;R;U; P

1

; P

2

; f lag2);

25. if (flag2 = 1) then

begin

26. t

L

:= t

C

;

27. TWO THREE(T; t

C

; t

P

; P;R;Q;U);

28. if (t

F

= t

L

) then t

F

:= t

C

;

29. F (1; t

C

) := R; F (2; t

C

) := F (2; t

P

);

30. F (1; t

P

) := Q; F (2; t

P

) := P ;t

C

:= t

P

end

end

31. if (flag2 = 1) then

begin

32. if (R 6= P

1

) then

begin

33. PREVIOUS TETRAHEDRON(T; P

1

; P

2

; t

C

; t

P

);

34. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

35. if (P = P

2

) then

begin

36. Q := F (2; t

P

); F (1; t

C

) := Q

end

end

else

begin

37. flag2 := 0;

38. if (P = P

2

) then flag := 1

else

begin

39. NEXT TETRAHEDRON(T; P

1

; P

2

; t

C

; t

N

);

40. F (2; t

C

) := F (1; t

N

)

end

end

end

end

end

end

end

Experiments show that 3D INSERT ATTEMPT seldom sueeds in inserting a line segment. However,

this may just be an indiation that it is seldom possible to insert a line segment into a tetrahedralization.

Let T , P

1

, P

2

, T

�

be as above. The following proposition shows that for a ertain kind of T

�

the failure of

the proedure simply signi�es that P

1

P

2

an not be inserted into T .



Proposition 1. If points Q

1

, Q

2

exist, Q

1

6= Q

2

, that are verties of every tetrahedron in T

�

, then at the

end of the exeution of 3D INSERT ATTEMPT, variable flag equals 1 if and only if P

1

P

2

an be inserted

into T .

Proof. That flag equal to 1 implies that the line segment an be inserted into T follows trivially. Thus, it

remains to be shown that if flag equals zero then the line segment an not be inserted into T .

For some positive integer n, let t

i

, i = 1; : : : ; n, be the tetrahedra in T

�

in the order in whih they are

interseted by the line segment from P

1

to P

2

.

At the end of the exeution of the proedure let T

��

be the olletion of tetrahedra in T that are interseted

by the relative interior of the line segment, and for some positive integer m, let t

0

i

, i = 1; : : : ;m, be the

tetrahedra in T

��

in the order in whih they are interseted by the line segment from P

1

to P

2

.

Clearly, n � m, and sine flag equals zero it follows that m � 3.

Let R

0

equal P

1

, and, indutively, for eah i, i = 1; : : : ; n, let R

i

be the vertex of t

i

di�erent from R

i�1

, Q

1

,

and Q

2

. Similarly, points R

0

i

, i = 0; : : : ;m are de�ned with respet to t

0

i

, i = 1; : : : ;m.

We de�ne a funtion f from f0; : : : ;mg into f0; : : : ; ng in suh a way that for eah i, i = 0; : : : ;m, R

0

i

equals

R

f(i)

. Based on this de�nition, for eah i, i = 1; : : : ;m, we then de�ne sets W

i

� fR

0

; : : : ; R

n

g, by

W

i

� fR

f(i�1)

= R

0

i�1

; R

f(i�1)+1

; : : : ; R

f(i)

= R

0

i

g:

From the de�nition of T

��

it follows that given i, 2 � i � m, the union of t

0

i�1

and t

0

i

is not a stritly onvex

hexahedron (step 15 of proedure). Thus, it is not possible to insert the line segment and at the same time

to have a new tetrahedron in T with verties Q

1

, R

0

i�2

, R

0

i�1

, R

0

i

. The same is true for a tetrahedron with

verties Q

2

, R

0

i�2

, R

0

i�1

, R

0

i

. From this and the fat that it is always true that F (1; t

C

) equals F (2; t

P

) in

step 19 of the proedure, it follows that for eah i, i = 2; : : : ;m, it is not possible to insert the line segment

and at the same time to have a new tetrahedron with one vertex equal to either Q

1

or Q

2

, two verties in

W

i�1

, and one vertex in W

i

n fR

0

i�1

g.

In what follows, we assume that the line segment an be inserted into T . Thus, we must assume that T

�

has

been transformed in suh a way that the line segment is one of its edges. Clearly, in the transformed T

�

,

whih we denote by

^

T

�

, only one tetrahedron an have both Q

1

and Q

2

as verties, namely the tetrahedron

with verties Q

1

, Q

2

, P

1

, and P

2

. All other tetrahedra with either Q

1

or Q

2

as a vertex have in addition

three verties of the form R

j

, R

k

, R

l

, 0 � j < k < l � n.

For some integer n

0

, 1 � n

0

< n, we de�ne integers h

i

, l

i

, i = 0; : : : ; n

0

, as follows. We let h

0

and l

0

equal

0 and n, respetively. Indutively, given i, i > 0, we assume integers h

i�1

, l

i�1

, 0 � h

i�1

< l

i�1

� n, have

been de�ned suh that for integers j, k, 1 � j < k � m, R

h

i�1

2W

j

, R

l

i�1

2W

k

, R

h

i�1

6= R

0

j

, R

l

i�1

6= R

0

k�1

,

and the triangle with verties Q

1

, R

h

i�1

, R

l

i�1

is a faet of a tetrahedron in

^

T

�

. Then from the geometry

of T

�

and the last fat about the triangle with verties Q

1

, R

h

i�1

, R

l

i�1

, it follows that integers h

i

, l

i

exist,

h

i�1

< h

i

< l

i

� l

i�1

, for whih R

h

i

2 W

j

, R

l

i

62W

j

, and the tetrahedron with verties Q

1

, R

h

i�1

, R

h

i

, R

l

i

belongs to

^

T

�

. If R

l

i

belongs to W

j+1

then we let n

0

equal i. That for some i, 1 � i < n, and some j,

1 � j < m, R

l

i

belongs to W

j+1

, while R

h

i�1

, R

h

i

belong to W

j

, follows from the fat that fh

i

g is an

inreasing sequene of integers bounded above by fl

i

g whih is itself a non-inreasing sequene of integers.

Thus, n

0

is well de�ned. However, this is a ontradition, for it implies for some j, 1 � j < m, the existene

of a tetrahedron in

^

T

�

with one vertex equal to Q

1

, two verties in W

j

, namely R

h

n

0

�1

and R

h

n

0

, and one

vertex in W

j+1

n fR

0

j

g, namely R

l

n

0

. This ompletes the proof of the proposition.

Finally, we shed more light on the fundamental di�erenes between planar and 3�dimensional line in-

sertion problems by identifying those 3�dimensional problems that an be approahed algorithmially as

2�dimensional problems. In order to do this we �rst develop some notation. For a positive integer n, let

P

i

, i = 1; : : : ; n, be distint points in the x� y plane of 3�dimensional spae, and for eah i, i = 1; : : : ; n,

let x

i

, y

i

be the x� and y�oordinates, respetively, of P

i

. Given a triangulation T for the set of points P

i

,

i = 1; : : : ; n, and numbers z

i

, i = 1; : : : ; n, we let T

0

be the olletion of distint 2�dimensional triangles in

3�dimensional spae whose perpendiular projetion onto the x � y plane is T , and whose set of verties

equals the set of points P

0

i

, i = 1; : : : ; n, de�ned by setting P

0

i

equal to (x

i

; y

i

; z

i

) for eah i, i = 1; : : : ; n.

Let P

i

, P

0

i

, x

i

, y

i

, z

i

, i = 1; : : : ; n, T , T

0

be as above. Assume that P

1

P

2

is not an edge in T and that

its relative interior does not ontain any verties in T . Let T

�

be the olletion of triangles in T that are

interseted by the relative interior of P

1

P

2

, and let

�

T be the olletion of triangles in T

0

whose perpendiular

projetion onto the x� y plane is T

�

. For arbitrarily large positive z we let

^

Q represent the point (0; 0; z),

and

^

T the olletion of tetrahedra obtained by omputing the onvex hulls of

^

Q together with eah of the

triangles in

�

T . In what follows, we say that P

0

1

P

0

2

an be inserted into

^

T if a olletion of tetrahedra

~

T exists



suh that the tetrahedra in

~

T have pair-wise disjoint interiors, the relative interior of P

0

1

P

0

2

is ontained in

the interior of the union of the tetrahedra in

~

T , P

0

1

P

0

2

is an edge in

~

T ,

~

T and

^

T have the same set of verties,

and the union of the tetrahedra in

~

T equals the union of the tetrahedra in

^

T . Based on these de�nitions, we

notie that if P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , i. e. its relative interior lies entirely in

^

T

and does not interset any edges of tetrahedra in

^

T , then an attempt an be made to insert it into

^

T with

3D INSERT ATTEMPT even though

^

T is not neessarily a omplete tetrahedralization for its verties.

We assume that P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , that INSERT SEGMENT (without

the optimization steps) has been exeuted for inserting P

1

P

2

into T , and that proedure EDGE SWAP

(step 17 of INSERT SEGMENT) has been exeuted m times during the insertion. Similarly, we assume

that 3D INSERT ATTEMPT has been exeuted for attempting to insert P

0

1

P

0

2

into

^

T and that proedure

TWO THREE (steps 21 and 27 of 3D INSERT ATTEMPT) has been exeutedm

0

times during the attempt.

We de�ne funtions a, e from f1; : : : ;mg into f(i; j) : 1 � i < j � ng as follows: Given l, 1 � l � m, we set

a(l) and e(l) equal to (h; k) and (q; r), respetively, where h, k, q, r are integers, 1 � h < k � n, 1 � q < r � n,

for whih after the l

th

exeution of EDGE SWAP in INSERT SEGMENT, P

h

P

k

is the new edge in the

triangulation and P

q

P

r

is the edge that has been eliminated. Correspondingly, assuming m

0

> 0, we also

de�ne funtions a

0

, e

0

from f1; : : : ;m

0

g into f(i; j) : 1 � i < j � ng as follows: Given l, 1 � l � m

0

, we set a

0

(l)

and e

0

(l) equal to (h; k) and (q; r), respetively, where h, k, q, r are integers, 1 � h < k � n, 1 � q < r � n,

for whih after the l

th

exeution of TWO THREE in 3D INSERT ATTEMPT, P

0

h

P

0

k

is the edge that the

three new tetrahedra have in ommon and P

0

q

P

0

r

is the edge that the two eliminated tetrahedra had in ommon

and that does not have

^

Q as an endpoint. Clearly, a(m) equals (1; 2), and if 3D INSERT ATTEMPT is

suessful then m

0

> 0 and a

0

(m

0

) also equals (1; 2).

Finally, in what follows, given integers h, k, q, r, 1 � h < k � n, 1 � q < r � n, we say that (h; k) rosses

(q; r) if the relative interiors of P

h

P

k

and P

q

P

r

have one and only one point in ommon. Assuming (h; k)

rosses (q; r), we say then that (h; k) is below (q; r) if at the point at whih P

h

P

k

intersets P

q

P

r

, P

0

h

P

0

k

is

lower than P

0

q

P

0

r

with respet to the z�axis.

We are now ready to present a proposition that identi�es the onditions that the tetrahedra in

^

T must

satisfy so that P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , and an then be inserted into

^

T with

3D INSERT ATTEMPT in a manner that mimis exatly what INSERT SEGMENT does when inserting

P

1

P

2

into T .

Proposition 2. P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , m equals m

0

, and for eah integer l,

l = 1; : : : ;m, a(l) equals a

0

(l), and e(l) equals e

0

(l) so that P

0

1

P

0

2

an be inserted into

^

T if and only if for eah

integer l, l = 1; : : : ;m, e(l) is below a(l).

Proof. The `only if' part follows easily. In order to prove the `if' part it suÆes to prove that for eah integer l,

l = 1; : : : ;m, e(l), whih obviously rosses (1; 2), is below (1; 2). This will imply that the line segment satis�es

the prerequisite for insertion in

^

T , and that flag2 always equals 1 in step 25 of 3D INSERT ATTEMPT

(after the exeution of proedure FACET INTERSECT in step 24).

Let T

�

be as de�ned above, and let T

�

0

equal T

�

. Indutively, for eah l, l = 1; : : : ;m, let T

�

l

be the

olletion of triangles in the x� y plane of 3�dimensional spae whih is the transformation of T

�

l�1

after

the l

th

edge swap.

Let

�

T be as de�ned above. For eah l, l = 0; : : : ;m, let

�

T

l

be the olletion of distint 2�dimensional triangles

in 3�dimensional spae whose perpendiular projetion onto the x� y plane equals T

�

l

, and whose set of

verties equals that of

�

T .

For eah l, l = 0; : : : ;m, we de�ne a real-valued funtion f

l

with domain the union of the triangles in T

�

as

follows. Given a point P in a triangle in T

�

we let x̂, ŷ be the x� and y�oordinates, respetively, of P ,

and let f

l

(P ) be the unique number for whih the point de�ned by (x̂; ŷ; f

l

(P )) belongs to a triangle in

�

T

l

.

Given an integer l, 1 � l � m, let h, k, q, r, 1 � h < k � n, 1 � q < r � n, be those integers for whih a(l)

equals (h; k) and e(l) equals (q; r). By de�nition T

�

l

is the transformation of T

�

l�1

obtained by replaing the

edge with endpoints P

q

, P

r

by the edge with endpoints P

h

, P

k

. Clearly, the replaed edge is shared by two

triangles in T

�

l�1

whose union is a stritly onvex quadrilateral and the new edge is the alternative diagonal of

this quadrilateral. These observations and the fat that e(l) is below a(l) imply that f

l�1

equals f

l

everywhere

exept in the relative interior of the aforementioned quadrilateral in whih f

l�1

is stritly less than f

l

. In

partiular, given a point P in the relative interior of the replaed edge, it then follows that f

l�1

(P ) < f

l

(P ).

Thus, sine the edge with endpoints P

1

, P

2

belongs to T

�

m

, given an integer l, 1 � l � m, and a point P

whih is the intersetion of the edge with endpoints P

1

, P

2

and the edge replaed in T

�

l�1

during the l

th

edge swap, it must follow that f

l�1

(P ) < f

l

(P ) � f

m

(P ). Hene, e(l) is below (1; 2) and the proof of the

proposition is omplete.
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